direct product, abelian, monomial, 2-elementary
Aliases: C22×C28, SmallGroup(112,37)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C28 |
C1 — C22×C28 |
C1 — C22×C28 |
Generators and relations for C22×C28
G = < a,b,c | a2=b2=c28=1, ab=ba, ac=ca, bc=cb >
Subgroups: 54, all normal (8 characteristic)
C1, C2, C2, C4, C22, C7, C2×C4, C23, C14, C14, C22×C4, C28, C2×C14, C2×C28, C22×C14, C22×C28
Quotients: C1, C2, C4, C22, C7, C2×C4, C23, C14, C22×C4, C28, C2×C14, C2×C28, C22×C14, C22×C28
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 29)(26 30)(27 31)(28 32)(57 90)(58 91)(59 92)(60 93)(61 94)(62 95)(63 96)(64 97)(65 98)(66 99)(67 100)(68 101)(69 102)(70 103)(71 104)(72 105)(73 106)(74 107)(75 108)(76 109)(77 110)(78 111)(79 112)(80 85)(81 86)(82 87)(83 88)(84 89)
(1 74)(2 75)(3 76)(4 77)(5 78)(6 79)(7 80)(8 81)(9 82)(10 83)(11 84)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 64)(20 65)(21 66)(22 67)(23 68)(24 69)(25 70)(26 71)(27 72)(28 73)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 109)(36 110)(37 111)(38 112)(39 85)(40 86)(41 87)(42 88)(43 89)(44 90)(45 91)(46 92)(47 93)(48 94)(49 95)(50 96)(51 97)(52 98)(53 99)(54 100)(55 101)(56 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
G:=sub<Sym(112)| (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,29)(26,30)(27,31)(28,32)(57,90)(58,91)(59,92)(60,93)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,111)(79,112)(80,85)(81,86)(82,87)(83,88)(84,89), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,81)(9,82)(10,83)(11,84)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)>;
G:=Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,29)(26,30)(27,31)(28,32)(57,90)(58,91)(59,92)(60,93)(61,94)(62,95)(63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,111)(79,112)(80,85)(81,86)(82,87)(83,88)(84,89), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,81)(9,82)(10,83)(11,84)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,64)(20,65)(21,66)(22,67)(23,68)(24,69)(25,70)(26,71)(27,72)(28,73)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,85)(40,86)(41,87)(42,88)(43,89)(44,90)(45,91)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112) );
G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,29),(26,30),(27,31),(28,32),(57,90),(58,91),(59,92),(60,93),(61,94),(62,95),(63,96),(64,97),(65,98),(66,99),(67,100),(68,101),(69,102),(70,103),(71,104),(72,105),(73,106),(74,107),(75,108),(76,109),(77,110),(78,111),(79,112),(80,85),(81,86),(82,87),(83,88),(84,89)], [(1,74),(2,75),(3,76),(4,77),(5,78),(6,79),(7,80),(8,81),(9,82),(10,83),(11,84),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,64),(20,65),(21,66),(22,67),(23,68),(24,69),(25,70),(26,71),(27,72),(28,73),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,109),(36,110),(37,111),(38,112),(39,85),(40,86),(41,87),(42,88),(43,89),(44,90),(45,91),(46,92),(47,93),(48,94),(49,95),(50,96),(51,97),(52,98),(53,99),(54,100),(55,101),(56,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)]])
C22×C28 is a maximal subgroup of
C28.55D4 C14.C42 C28.48D4 C23.21D14 C23.23D14 C28⋊7D4
112 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 7A | ··· | 7F | 14A | ··· | 14AP | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
112 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C4 | C7 | C14 | C14 | C28 |
kernel | C22×C28 | C2×C28 | C22×C14 | C2×C14 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 8 | 6 | 36 | 6 | 48 |
Matrix representation of C22×C28 ►in GL3(𝔽29) generated by
1 | 0 | 0 |
0 | 28 | 0 |
0 | 0 | 1 |
28 | 0 | 0 |
0 | 28 | 0 |
0 | 0 | 1 |
5 | 0 | 0 |
0 | 20 | 0 |
0 | 0 | 2 |
G:=sub<GL(3,GF(29))| [1,0,0,0,28,0,0,0,1],[28,0,0,0,28,0,0,0,1],[5,0,0,0,20,0,0,0,2] >;
C22×C28 in GAP, Magma, Sage, TeX
C_2^2\times C_{28}
% in TeX
G:=Group("C2^2xC28");
// GroupNames label
G:=SmallGroup(112,37);
// by ID
G=gap.SmallGroup(112,37);
# by ID
G:=PCGroup([5,-2,-2,-2,-7,-2,280]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^28=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations